Security and Privacy in TinyML Applications Training Course
TinyML is an approach to deploying machine learning models on low-power, resource-constrained devices operating at the network edge.
This instructor-led, live training (online or onsite) is aimed at advanced-level professionals who wish to secure TinyML pipelines and implement privacy-preserving techniques in edge AI applications.
At the conclusion of this course, participants will be able to:
- Identify security risks unique to on-device TinyML inference.
- Implement privacy-preserving mechanisms for edge AI deployments.
- Harden TinyML models and embedded systems against adversarial threats.
- Apply best practices for secure data handling in constrained environments.
Format of the Course
- Engaging lectures supported by expert-led discussions.
- Practical exercises emphasizing real-world threat scenarios.
- Hands-on implementation using embedded security and TinyML tooling.
Course Customization Options
- Organizations may request a tailored version of this training to align with their specific security and compliance needs.
Course Outline
Introduction to Security in TinyML
- Security challenges in resource-constrained ML systems
- Threat models for TinyML deployments
- Risk categories for embedded AI applications
Data Privacy in Edge AI
- Privacy considerations for on-device data processing
- Minimizing data exposure and transfer
- Techniques for decentralized data handling
Adversarial Attacks on TinyML Models
- Model evasion and poisoning threats
- Input manipulation on embedded sensors
- Assessing vulnerability in constrained environments
Security Hardening for Embedded ML
- Firmware and hardware protection layers
- Access control and secure boot mechanisms
- Best practices for safeguarding inference pipelines
Privacy-Preserving TinyML Techniques
- Quantization and model design considerations for privacy
- Techniques for on-device anonymization
- Lightweight encryption and secure computation methods
Secure Deployment and Maintenance
- Secure provisioning of TinyML devices
- OTA updates and patching strategies
- Monitoring and incident response at the edge
Testing and Validation of Secure TinyML Systems
- Security and privacy testing frameworks
- Simulating real-world attack scenarios
- Validation and compliance considerations
Case Studies and Applied Scenarios
- Security failures in edge AI ecosystems
- Designing resilient TinyML architectures
- Evaluating trade-offs between performance and protection
Summary and Next Steps
Requirements
- An understanding of embedded system architectures
- Experience with machine learning workflows
- Knowledge of cybersecurity fundamentals
Audience
- Security analysts
- AI developers
- Embedded engineers
Need help picking the right course?
Security and Privacy in TinyML Applications Training Course - Enquiry
Security and Privacy in TinyML Applications - Consultancy Enquiry
Consultancy Enquiry
Related Courses
AI Governance, Compliance, and Security for Enterprise Leaders
14 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at intermediate-level enterprise leaders who wish to understand how to govern and secure AI systems responsibly and in compliance with emerging global frameworks such as the EU AI Act, GDPR, ISO/IEC 42001, and the U.S. Executive Order on AI.
By the end of this training, participants will be able to:
- Understand the legal, ethical, and regulatory risks of using AI across departments.
- Interpret and apply major AI governance frameworks (EU AI Act, NIST AI RMF, ISO/IEC 42001).
- Establish security, auditing, and oversight policies for AI deployment in the enterprise.
- Develop procurement and usage guidelines for third-party and in-house AI systems.
AI Risk Management and Security in the Public Sector
7 HoursArtificial Intelligence (AI) introduces new dimensions of operational risk, governance challenges, and cybersecurity exposure for government agencies and departments.
This instructor-led, live training (online or onsite) is aimed at public sector IT and risk professionals with limited prior experience in AI who wish to understand how to evaluate, monitor, and secure AI systems within a government or regulatory context.
By the end of this training, participants will be able to:
- Interpret key risk concepts related to AI systems, including bias, unpredictability, and model drift.
- Apply AI-specific governance and auditing frameworks such as NIST AI RMF and ISO/IEC 42001.
- Recognize cybersecurity threats targeting AI models and data pipelines.
- Establish cross-departmental risk management plans and policy alignment for AI deployment.
Format of the Course
- Interactive lecture and discussion of public sector use cases.
- AI governance framework exercises and policy mapping.
- Scenario-based threat modeling and risk evaluation.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to AI Trust, Risk, and Security Management (AI TRiSM)
21 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at beginner-level to intermediate-level IT professionals who wish to understand and implement AI TRiSM in their organizations.
By the end of this training, participants will be able to:
- Grasp the key concepts and importance of AI trust, risk, and security management.
- Identify and mitigate risks associated with AI systems.
- Implement security best practices for AI.
- Understand regulatory compliance and ethical considerations for AI.
- Develop strategies for effective AI governance and management.
Building Secure and Responsible LLM Applications
14 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at intermediate-level to advanced-level AI developers, architects, and product managers who wish to identify and mitigate risks associated with LLM-powered applications, including prompt injection, data leakage, and unfiltered output, while incorporating security controls like input validation, human-in-the-loop oversight, and output guardrails.
By the end of this training, participants will be able to:
- Understand the core vulnerabilities of LLM-based systems.
- Apply secure design principles to LLM app architecture.
- Use tools such as Guardrails AI and LangChain for validation, filtering, and safety.
- Integrate techniques like sandboxing, red teaming, and human-in-the-loop review into production-grade pipelines.
Cybersecurity in AI Systems
14 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at intermediate-level AI and cybersecurity professionals who wish to understand and address the security vulnerabilities specific to AI models and systems, particularly in highly regulated industries such as finance, data governance, and consulting.
By the end of this training, participants will be able to:
- Understand the types of adversarial attacks targeting AI systems and methods to defend against them.
- Implement model hardening techniques to secure machine learning pipelines.
- Ensure data security and integrity in machine learning models.
- Navigate regulatory compliance requirements related to AI security.
Introduction to AI Security and Risk Management
14 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at beginner-level IT security, risk, and compliance professionals who wish to understand foundational AI security concepts, threat vectors, and global frameworks such as NIST AI RMF and ISO/IEC 42001.
By the end of this training, participants will be able to:
- Understand the unique security risks introduced by AI systems.
- Identify threat vectors such as adversarial attacks, data poisoning, and model inversion.
- Apply foundational governance models like the NIST AI Risk Management Framework.
- Align AI use with emerging standards, compliance guidelines, and ethical principles.
Deploying AI on Microcontrollers with TinyML
21 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at intermediate-level embedded systems engineers and AI developers who wish to deploy machine learning models on microcontrollers using TensorFlow Lite and Edge Impulse.
By the end of this training, participants will be able to:
- Understand the fundamentals of TinyML and its benefits for edge AI applications.
- Set up a development environment for TinyML projects.
- Train, optimize, and deploy AI models on low-power microcontrollers.
- Use TensorFlow Lite and Edge Impulse to implement real-world TinyML applications.
- Optimize AI models for power efficiency and memory constraints.
OWASP GenAI Security
14 HoursBased on the latest OWASP GenAI Security Project guidance, participants will learn to identify, assess, and mitigate AI-specific threats through hands-on exercises and real-world scenarios.
Privacy-Preserving Machine Learning
14 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at advanced-level professionals who wish to implement and evaluate techniques such as federated learning, secure multiparty computation, homomorphic encryption, and differential privacy in real-world machine learning pipelines.
By the end of this training, participants will be able to:
- Understand and compare key privacy-preserving techniques in ML.
- Implement federated learning systems using open-source frameworks.
- Apply differential privacy for safe data sharing and model training.
- Use encryption and secure computation techniques to protect model inputs and outputs.
Red Teaming AI Systems: Offensive Security for ML Models
14 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at advanced-level security professionals and ML specialists who wish to simulate attacks on AI systems, uncover vulnerabilities, and enhance the robustness of deployed AI models.
By the end of this training, participants will be able to:
- Simulate real-world threats to machine learning models.
- Generate adversarial examples to test model robustness.
- Assess the attack surface of AI APIs and pipelines.
- Design red teaming strategies for AI deployment environments.
Securing Edge AI and Embedded Intelligence
14 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at intermediate-level engineers and security professionals who wish to secure AI models deployed at the edge against threats such as tampering, data leakage, adversarial inputs, and physical attacks.
By the end of this training, participants will be able to:
- Identify and assess security risks in edge AI deployments.
- Apply tamper resistance and encrypted inference techniques.
- Harden edge-deployed models and secure data pipelines.
- Implement threat mitigation strategies specific to embedded and constrained systems.
Securing AI Models: Threats, Attacks, and Defenses
14 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at intermediate-level machine learning and cybersecurity professionals who wish to understand and mitigate emerging threats against AI models, using both conceptual frameworks and hands-on defenses like robust training and differential privacy.
By the end of this training, participants will be able to:
- Identify and classify AI-specific threats such as adversarial attacks, inversion, and poisoning.
- Use tools like the Adversarial Robustness Toolbox (ART) to simulate attacks and test models.
- Apply practical defenses including adversarial training, noise injection, and privacy-preserving techniques.
- Design threat-aware model evaluation strategies in production environments.
Safe & Secure Agentic AI: Governance, Identity, and Red-Teaming
21 HoursThis course covers governance, identity management, and adversarial testing for agentic AI systems, focusing on enterprise-safe deployment patterns and practical red-teaming techniques.
This instructor-led, live training (online or onsite) is aimed at advanced-level practitioners who wish to design, secure, and evaluate agent-based AI systems in production environments.
By the end of this training, participants will be able to:
- Define governance models and policies for safe agentic AI deployments.
- Design non-human identity and authentication flows for agents with least-privilege access.
- Implement access controls, audit trails, and observability tailored to autonomous agents.
- Plan and execute red-team exercises to discover misuses, escalation paths, and data exfiltration risks.
- Mitigate common threats to agentic systems through policy, engineering controls, and monitoring.
Format of the Course
- Interactive lectures and threat-modeling workshops.
- Hands-on labs: identity provisioning, policy enforcement, and adversary simulation.
- Red-team/blue-team exercises and end-of-course assessment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to TinyML
14 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at beginner-level engineers and data scientists who wish to understand TinyML fundamentals, explore its applications, and deploy AI models on microcontrollers.
By the end of this training, participants will be able to:
- Understand the fundamentals of TinyML and its significance.
- Deploy lightweight AI models on microcontrollers and edge devices.
- Optimize and fine-tune machine learning models for low-power consumption.
- Apply TinyML for real-world applications such as gesture recognition, anomaly detection, and audio processing.
TinyML: Running AI on Ultra-Low-Power Edge Devices
21 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at intermediate-level embedded engineers, IoT developers, and AI researchers who wish to implement TinyML techniques for AI-powered applications on energy-efficient hardware.
By the end of this training, participants will be able to:
- Understand the fundamentals of TinyML and edge AI.
- Deploy lightweight AI models on microcontrollers.
- Optimize AI inference for low-power consumption.
- Integrate TinyML with real-world IoT applications.