TinyML for IoT Applications Training Course
TinyML extends machine learning capabilities to ultra-low-power IoT devices, enabling real-time intelligence at the edge.
This instructor-led, live training (online or onsite) is aimed at intermediate-level IoT developers, embedded engineers, and AI practitioners who wish to implement TinyML for predictive maintenance, anomaly detection, and smart sensor applications.
By the end of this training, participants will be able to:
- Understand the fundamentals of TinyML and its applications in IoT.
- Set up a TinyML development environment for IoT projects.
- Develop and deploy ML models on low-power microcontrollers.
- Implement predictive maintenance and anomaly detection using TinyML.
- Optimize TinyML models for efficient power and memory usage.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to TinyML and IoT
- What is TinyML?
- Benefits of TinyML in IoT applications
- Comparison of TinyML with traditional cloud-based AI
- Overview of TinyML tools: TensorFlow Lite, Edge Impulse
Setting Up the TinyML Environment
- Installing and configuring Arduino IDE
- Setting up Edge Impulse for TinyML model development
- Understanding microcontrollers for IoT (ESP32, Arduino, Raspberry Pi Pico)
- Connecting and testing hardware components
Developing Machine Learning Models for IoT
- Collecting and preprocessing IoT sensor data
- Building and training lightweight ML models
- Converting models to TensorFlow Lite format
- Optimizing models for memory and power constraints
Deploying AI Models on IoT Devices
- Flashing and running ML models on microcontrollers
- Validating model performance in real-world IoT scenarios
- Debugging and optimizing TinyML deployments
Implementing Predictive Maintenance with TinyML
- Using ML for equipment health monitoring
- Sensor-based anomaly detection techniques
- Deploying predictive maintenance models on IoT devices
Smart Sensors and Edge AI in IoT
- Enhancing IoT applications with TinyML-powered sensors
- Real-time event detection and classification
- Use cases: environmental monitoring, smart agriculture, industrial IoT
Security and Optimization in TinyML for IoT
- Data privacy and security in edge AI applications
- Techniques for reducing power consumption
- Future trends and advancements in TinyML for IoT
Summary and Next Steps
Requirements
- Experience with IoT or embedded systems development
- Familiarity with Python or C/C++ programming
- Basic understanding of machine learning concepts
- Knowledge of microcontroller hardware and peripherals
Audience
- IoT developers
- Embedded engineers
- AI practitioners
Need help picking the right course?
TinyML for IoT Applications Training Course - Enquiry
TinyML for IoT Applications - Consultancy Enquiry
Consultancy Enquiry
Testimonials (1)
The oral skills and human side of the trainer (Augustin).
Jeremy Chicon - TE Connectivity
Course - NB-IoT for Developers
Related Courses
Advanced Edge Computing
21 HoursDelve deeper into the innovative realm of edge computing with this advanced course. Explore sophisticated architectures and tackle integration challenges, preparing to leverage the full potential of edge computing in a variety of business environments. Gain expertise in cutting-edge tools and methodologies to deploy, manage, and optimize edge computing solutions that meet specific industry needs.
Digital Transformation with IoT and Edge Computing
14 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at intermediate-level IT professionals and business managers who wish to understand the potential of IoT and edge computing for enabling efficiency, real-time processing, and innovation in various industries.
By the end of this training, participants will be able to:
- Understand the principles of IoT and edge computing and their role in digital transformation.
- Identify use cases for IoT and edge computing in manufacturing, logistics, and energy sectors.
- Differentiate between edge and cloud computing architectures and deployment scenarios.
- Implement edge computing solutions for predictive maintenance and real-time decision-making.
Applied Edge AI
35 HoursCombine the transformative power of AI with the agility of edge computing in this comprehensive course. Learn to deploy AI models directly on edge devices, from understanding CNN architectures to mastering knowledge distillation and federated learning. This hands-on training will equip you with the skills to optimize AI performance for real-time processing and decision-making at the edge.
Edge AI for IoT Applications
14 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at intermediate-level developers, system architects, and industry professionals who wish to leverage Edge AI for enhancing IoT applications with intelligent data processing and analytics capabilities.
By the end of this training, participants will be able to:
- Understand the fundamentals of Edge AI and its application in IoT.
- Set up and configure Edge AI environments for IoT devices.
- Develop and deploy AI models on edge devices for IoT applications.
- Implement real-time data processing and decision-making in IoT systems.
- Integrate Edge AI with various IoT protocols and platforms.
- Address ethical considerations and best practices in Edge AI for IoT.
Edge Computing
7 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at product managers and developers who wish to use Edge Computing to decentralize data management for faster performance, leveraging smart devices located on the source network.
By the end of this training, participants will be able to:
- Understand the basic concepts and advantages of Edge Computing.
- Identify the use cases and examples where Edge Computing can be applied.
- Design and build Edge Computing solutions for faster data processing and reduced operational costs.
Edge Computing Infrastructure
28 HoursBuild a strong foundation in designing and managing a resilient edge computing infrastructure. Learn about open hybrid cloud infrastructures, managing workloads across diverse clouds, and ensuring flexibility and redundancy. This training provides essential knowledge on creating a scalable and secure infrastructure that supports the dynamic needs of modern applications with edge computing.
Federated Learning in IoT and Edge Computing
14 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at intermediate-level professionals who wish to apply Federated Learning to optimize IoT and edge computing solutions.
By the end of this training, participants will be able to:
- Understand the principles and benefits of Federated Learning in IoT and edge computing.
- Implement Federated Learning models on IoT devices for decentralized AI processing.
- Reduce latency and improve real-time decision-making in edge computing environments.
- Address challenges related to data privacy and network constraints in IoT systems.
Deploying AI on Microcontrollers with TinyML
21 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at intermediate-level embedded systems engineers and AI developers who wish to deploy machine learning models on microcontrollers using TensorFlow Lite and Edge Impulse.
By the end of this training, participants will be able to:
- Understand the fundamentals of TinyML and its benefits for edge AI applications.
- Set up a development environment for TinyML projects.
- Train, optimize, and deploy AI models on low-power microcontrollers.
- Use TensorFlow Lite and Edge Impulse to implement real-world TinyML applications.
- Optimize AI models for power efficiency and memory constraints.
NB-IoT for Developers
7 HoursIn this instructor-led, live training in Uzbekistan, participants will learn about the various aspects of NB-IoT (also known as LTE Cat NB1) as they develop and deploy a sample NB-IoT based application.
By the end of this training, participants will be able to:
- Identify the different components of NB-IoT and how to fit together to form an ecosystem.
- Understand and explain the security features built into NB-IoT devices.
- Develop a simple application to track NB-IoT devices.
Optimizing TinyML Models for Performance and Efficiency
21 HoursTinyML is the practice of deploying machine learning models on highly resource-constrained hardware.
This instructor-led, live training (online or onsite) is aimed at advanced-level practitioners who wish to optimize TinyML models for low-latency, memory-efficient deployment on embedded devices.
Upon completing this training, participants will be able to:
- Apply quantization, pruning, and compression techniques to reduce model size without sacrificing accuracy.
- Benchmark TinyML models for latency, memory consumption, and energy efficiency.
- Implement optimized inference pipelines on microcontrollers and edge devices.
- Evaluate trade-offs between performance, accuracy, and hardware constraints.
Format of the Course
- Instructor-led presentations supported by technical demonstrations.
- Practical optimization exercises and comparative performance testing.
- Hands-on implementation of TinyML pipelines in a controlled lab environment.
Course Customization Options
- For tailored training aligned with specific hardware platforms or internal workflows, please contact us to customize the program.
Setting Up an IoT Gateway with ThingsBoard
35 HoursThingsBoard is an open source IoT platform that offers device management, data collection, processing and visualization for your IoT solution.
In this instructor-led, live training, participants will learn how to integrate ThingsBoard into their IoT solutions.
By the end of this training, participants will be able to:
- Install and configure ThingsBoard
- Understand the fundamentals of ThingsBoard features and architecture
- Build IoT applications with ThingsBoard
- Integrate ThingsBoard with Kafka for telemetry device data routing
- Integrate ThingsBoard with Apache Spark for data aggregation from multiple devices
Audience
- Software engineers
- Hardware engineers
- Developers
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Note
- To request a customized training for this course, please contact us to arrange.
Introduction to TinyML
14 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at beginner-level engineers and data scientists who wish to understand TinyML fundamentals, explore its applications, and deploy AI models on microcontrollers.
By the end of this training, participants will be able to:
- Understand the fundamentals of TinyML and its significance.
- Deploy lightweight AI models on microcontrollers and edge devices.
- Optimize and fine-tune machine learning models for low-power consumption.
- Apply TinyML for real-world applications such as gesture recognition, anomaly detection, and audio processing.
TinyML: Running AI on Ultra-Low-Power Edge Devices
21 HoursThis instructor-led, live training in Uzbekistan (online or onsite) is aimed at intermediate-level embedded engineers, IoT developers, and AI researchers who wish to implement TinyML techniques for AI-powered applications on energy-efficient hardware.
By the end of this training, participants will be able to:
- Understand the fundamentals of TinyML and edge AI.
- Deploy lightweight AI models on microcontrollers.
- Optimize AI inference for low-power consumption.
- Integrate TinyML with real-world IoT applications.
TinyML in Healthcare: AI on Wearable Devices
21 HoursTinyML is the integration of machine learning into low-power, resource-limited wearable and medical devices.
This instructor-led, live training (online or onsite) is aimed at intermediate-level practitioners who wish to implement TinyML solutions for healthcare monitoring and diagnostic applications.
After completing this training, participants will be able to:
- Design and deploy TinyML models for real-time health data processing.
- Collect, preprocess, and interpret biosensor data for AI-driven insights.
- Optimize models for low-power and memory-constrained wearable devices.
- Evaluate the clinical relevance, reliability, and safety of TinyML-driven outputs.
Format of the Course
- Lectures supported by live demonstrations and interactive discussion.
- Hands-on practice with wearable device data and TinyML frameworks.
- Implementation exercises in a guided lab environment.
Course Customization Options
- For tailored training that aligns with specific healthcare devices or regulatory workflows, please contact us to customize the program.
TinyML for Smart Agriculture
21 HoursTinyML is a framework for deploying machine learning models on low-power, resource-constrained devices in the field.
This instructor-led, live training (online or onsite) is designed for intermediate-level professionals who wish to apply TinyML techniques to smart agriculture solutions that enhance automation and environmental intelligence.
Upon completing this program, participants will gain the ability to:
- Build and deploy TinyML models for agricultural sensing applications.
- Integrate edge AI into IoT ecosystems for automated crop monitoring.
- Use specialized tools to train and optimize lightweight models.
- Develop workflows for precision irrigation, pest detection, and environmental analytics.
Format of the Course
- Guided presentations and applied technical discussion.
- Hands-on practice using real-world datasets and devices.
- Practical experimentation in a supported lab environment.
Course Customization Options
- For tailored training aligned with specific agricultural systems, please contact us to customize the program.